50u价格1800元,欢迎咨询订购。
相关文献:
Journal of General Virology 2010-02-01
Differential binding patterns to host cells associated with particles of several human alphapapillomavirus types.
Tatevik R Broutian, Sarah A Brendle, Neil D Christensen
PMID 19846678
Abstract
The focus of this research was to compare the binding profiles of human papillomavirus (HPV) 11, 16, 18 and 45 virus-like particles (VLPs) to HaCaT cells and to the extracellular matrix (ECM) secreted by these cells. All four HPV types tested bind to a component(s) of the ECM. HPV11 VLP binding is blocked when the ECM is pretreated with an anti-laminin 5 (LN5) polyclonal antibody. A series of treatments utilizing heparins and heparinase revealed that HPV18 VLPs are dependent on heparan sulfates (HS) for binding to cells and ECM. HPV16 and HPV45 VLPs are dependent on HS for binding to HaCaT cells and dependent on both HS and LN5 for binding to ECM. These studies emphasize the need to study the binding characteristics of different HPV types before applying universal binding principles to all papillomaviruses.
PMID 21796337
h2519pis.pdfSalt overload damages the glycocalyx sodium barrier of vascular endothelium.
Hans Oberleithner, Wladimir Peters, Kristina Kusche-Vihrog, Stefanie Korte, Hermann Schillers, Katrin Kliche, Kilian Oberleithner
PMID 21796337
Abstract
Sodium overload stiffens vascular endothelial cells in vitro and promotes arterial hypertension in vivo. The hypothesis was tested that the endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the surface of the endothelium, participates in the stiffening process. By using a mechanical nanosensor, mounted on an atomic force microscope, height (~400 nm) and stiffness (~0.25 pN/nm) of the eGC on the luminal endothelial surface of split-open human umbilical arteries were quantified. In presence of aldosterone, the increase of extracellular sodium concentration from 135 to 150 mM over 5 days (sodium overload) led the eGC shrink by ~50% and stiffening by ~130%. Quantitative eGC analyses reveal that sodium overload caused a reduction of heparan sulphate residues by 68% which lead to destabilization and collapse of the eGC. Sodium overload transformed the endothelial cells from a sodium release into a sodium-absorbing state. Spironolactone, a specific aldosterone antagonist, prevented these changes. We conclude that the endothelial glycocalyx serves as an effective buffer barrier for sodium. Damaged eGC facilitates sodium entry into the endothelial cells. This could explain endothelial dysfunction and arterial hypertension observed in sodium abuse.